Fourier Transforms#
Fourier transform equations#
Fourier transform relations#
Fourier Domain |
|
---|---|
\(f(x)\) |
\(F(f_x)\) |
\(K f(x)\) |
\(K F(f_x)\) |
\(f(ax)\) |
\(\frac{1}{a} F \left( \frac{f_x}{a} \right)\) |
\(f(x-a)\) |
\(\exp (-j 2 \pi f_x a) F(f_x)\) |
\(\exp(j 2 \pi f_{xo}x) f(x)\) |
\(F(f_x - f_{xo})\) |
Useful functions#
Function |
Definition |
---|---|
rectangle |
\(\mathrm{rect}(x) = \left\{ \begin{matrix} 1 & \lvert x \rvert \lt \frac{1}{2} \\ \frac{1}{2} & \lvert x \rvert = \frac{1}{2} \\ 0 & \mathrm{otherwise} \end{matrix} \right.\) |
sinc |
\(\mathrm{sinc}(x) = \frac{\sin(\pi x)}{\pi x}\) |
signum |
\(\mathrm{sgn}(x) = \left\{ \begin{matrix} 1 & x \gt 0 \\ 0 & x = 0 \\ -1 & x \lt 0 \end{matrix} \right.\) |
triangle |
\(\Lambda(x) = \left\{ \begin{matrix} 1 - \lvert x \rvert & \lvert x \rvert \leq 1 \\ 0 & \mathrm{otherwise} \end{matrix} \right.\) |
comb |
\(\mathrm{comb}(x) = \sum_{n=-\infty}^\infty \delta(x-n)\) |
circle |
\(\mathrm{circ}(\sqrt{x^2 + y^2}) = \left\{ \begin{matrix} 1 & \sqrt{x^2 + y^2} \lt 1 \\ \frac{1}{2} & \sqrt{x^2 + y^2} = \frac{1}{2} \\ 0 & \mathrm{otherwise} \end{matrix} \right.\) |
Useful equivalencies#
Fourier transforms#
Function |
Definition |
Transform |
---|---|---|
Impulse |
\(\delta (x)\) |
\(1\) |
Uniform |
\(A\) |
\(2 \pi A \delta (f_x)\) |
Cosine |
\(\cos (\omega_{xo} x)\) |
\(\pi \left[ \delta (\omega_x + \omega_{xo}) + \delta (\omega_x - \omega_{xo}) \right]\) |
Sine |
\(\sin (\omega_{xo})\) |
\(j\pi \left[ \delta (\omega_x + \omega_{xo}) - \delta (\omega_x - \omega_{xo}) \right]\) |
Rectangular |
\(\mathrm{rect}(x)\) |
\(\mathrm{sinc}(f_x)\) |
Triangle |
\(\Lambda (x)\) |
\(\mathrm{sinc}^2(f_x)\) |
Circle |
\(\mathrm{circ} \left( \frac{r}{R} \right)\) |
\(\pi R^2 \left[ 2 \frac{J_1 (2 \pi R f_x)}{2 \pi R f_x} \right]\) |
Exponential |
\(\exp \left( -\lvert x \rvert \right)\) |
\(\frac{2}{1 + (2 \pi f_x)^2}\) |
Gaussian |
\(\exp \left( - \pi x^2 \right)\) |
\(\exp \left( - \pi f_x^2 \right)\) |
Chirp |
\(\exp (j \pi x^2)\) |
\(\exp \left( j \frac{\pi}{4} \right) \exp (-j \pi f_x^2)\) |
Finite sum of pulses |
\(\sum_{n=-s}^s \delta (x-n)\) |
\(\frac{\sin (M \pi f_x)}{\sin (\pi f_x)}, M=2S+1\) |
Infinite sum of pulses |
\(\sum_{n=-\infty}^\infty \delta (x-n)\) |
\(\sum_{n=-\infty}^\infty \delta (f_x - n)\) |