Fourier Transforms#

Fourier transform equations#

(4)#\[ G(f_x, f_y) = F\{g\} = \int \int g(x, y) \exp \left[ -j 2 \pi (f_x x + f_y y) \right] dx dy \]
(5)#\[ g(x, y) = \mathfrak{F}^{-1} \{G\} = \int \int G(f_x, f_y) \exp \left[ j 2 \pi (f_x x + f_y y) \right] dx dy \]

Fourier transform relations#

Fourier Domain

\(f(x)\)

\(F(f_x)\)

\(K f(x)\)

\(K F(f_x)\)

\(f(ax)\)

\(\frac{1}{a} F \left( \frac{f_x}{a} \right)\)

\(f(x-a)\)

\(\exp (-j 2 \pi f_x a) F(f_x)\)

\(\exp(j 2 \pi f_{xo}x) f(x)\)

\(F(f_x - f_{xo})\)

Useful functions#

Table 1 Useful Functions#

Function

Definition

rectangle

\(\mathrm{rect}(x) = \left\{ \begin{matrix} 1 & \lvert x \rvert \lt \frac{1}{2} \\ \frac{1}{2} & \lvert x \rvert = \frac{1}{2} \\ 0 & \mathrm{otherwise} \end{matrix} \right.\)

sinc

\(\mathrm{sinc}(x) = \frac{\sin(\pi x)}{\pi x}\)

signum

\(\mathrm{sgn}(x) = \left\{ \begin{matrix} 1 & x \gt 0 \\ 0 & x = 0 \\ -1 & x \lt 0 \end{matrix} \right.\)

triangle

\(\Lambda(x) = \left\{ \begin{matrix} 1 - \lvert x \rvert & \lvert x \rvert \leq 1 \\ 0 & \mathrm{otherwise} \end{matrix} \right.\)

comb

\(\mathrm{comb}(x) = \sum_{n=-\infty}^\infty \delta(x-n)\)

circle

\(\mathrm{circ}(\sqrt{x^2 + y^2}) = \left\{ \begin{matrix} 1 & \sqrt{x^2 + y^2} \lt 1 \\ \frac{1}{2} & \sqrt{x^2 + y^2} = \frac{1}{2} \\ 0 & \mathrm{otherwise} \end{matrix} \right.\)

Useful equivalencies#

(6)#\[ \int_{-\infty}^\infty \mathrm{sinc} (x) dx = \int_{-\infty}^{\infty} \mathrm{sinc}^2(x) dx = 1 \]
(7)#\[ \int_{0}^{\infty} \lvert \frac{J_1(x)}{x} \rvert ^2 dx = \frac{4}{3\pi} \]
(8)#\[ \int_0^\infty x | \frac{J_1(x)}{x} | ^2 dx = \frac{1}{2} \]
(9)#\[ \lim_{x\to\infty} \left( J_1(x) \right) = \frac{x}{2} \]

Fourier transforms#

Table 2 Fourier Transforms#

Function

Definition

Transform

Impulse

\(\delta (x)\)

\(1\)

Uniform

\(A\)

\(2 \pi A \delta (f_x)\)

Cosine

\(\cos (\omega_{xo} x)\)

\(\pi \left[ \delta (\omega_x + \omega_{xo}) + \delta (\omega_x - \omega_{xo}) \right]\)

Sine

\(\sin (\omega_{xo})\)

\(j\pi \left[ \delta (\omega_x + \omega_{xo}) - \delta (\omega_x - \omega_{xo}) \right]\)

Rectangular

\(\mathrm{rect}(x)\)

\(\mathrm{sinc}(f_x)\)

Triangle

\(\Lambda (x)\)

\(\mathrm{sinc}^2(f_x)\)

Circle

\(\mathrm{circ} \left( \frac{r}{R} \right)\)

\(\pi R^2 \left[ 2 \frac{J_1 (2 \pi R f_x)}{2 \pi R f_x} \right]\)

Exponential

\(\exp \left( -\lvert x \rvert \right)\)

\(\frac{2}{1 + (2 \pi f_x)^2}\)

Gaussian

\(\exp \left( - \pi x^2 \right)\)

\(\exp \left( - \pi f_x^2 \right)\)

Chirp

\(\exp (j \pi x^2)\)

\(\exp \left( j \frac{\pi}{4} \right) \exp (-j \pi f_x^2)\)

Finite sum of pulses

\(\sum_{n=-s}^s \delta (x-n)\)

\(\frac{\sin (M \pi f_x)}{\sin (\pi f_x)}, M=2S+1\)

Infinite sum of pulses

\(\sum_{n=-\infty}^\infty \delta (x-n)\)

\(\sum_{n=-\infty}^\infty \delta (f_x - n)\)