12. Fraunhofer Approximation#

fraunhofer_examples.pdf

LED_diffraction_example.pdf

12.1. Example 1: A Square Aperture#

A \(100 \mu m \times 1 \mathrm{mm}\) aperture illuminated by a laser \(\lambda = 500 nm\).

  1. Find the diffraction pattern.

  2. Find the necessary distance away from the aperture.

Assume that the incident field is a plane wave

\[ E(x, y) = \frac{e^{j k z}}{j \lambda z} e^{j \frac{k}{2z}(x^2 + y^2)} \mathfrak{F}\{ P(x, y) \} |_{f_x = x / \lambda z, f_y = y / \lambda z} \]
\[\begin{split} P(x) = \left\{ \begin{matrix} 1 & \lvert x \rvert \leq 50 \mu m \\ 0 & \mathrm{otherwise} \end{matrix} \right. \end{split}\]

This is similar to

\[\begin{split} \mathrm{rect}(x) = \left\{ \begin{matrix} 1 & \lvert x \rvert \leq \frac{1}{2} \\ 0 & \mathrm{otherwise} \end{matrix} \right. \end{split}\]
\[\begin{split} \begin{align} \begin{split} \mathrm{rect}(a x) &= \left\{ \begin{matrix} 1 & \lvert a x \rvert \leq \frac{1}{2} \\ 0 & \mathrm{otherwise} \end{matrix} \right. \\ &= \left\{ \begin{matrix} 1 & \lvert x \rvert \leq \frac{1}{2a} \\ 0 & \mathrm{otherwise} \end{matrix} \right. \\ \end{split} \end{align} \end{split}\]

Let \( a = \frac{1}{100} \mu m \).

\[\begin{split} P(x) = \mathrm{rect}(\frac{x}{100\mu m}) = \left\{ \begin{matrix} 1 & \lvert x \rvert \leq 50 \mu m \\ 0 & \mathrm{otherwise} \end{matrix} \right. \end{split}\]

Now take the Fourier transform,

\[ \mathfrak{F}\{ \mathrm{rect}(ax) \} = \frac{1}{a} \mathrm{sinc} \left( \frac{F_x}{a} \right) \]
\[ P(F_x) = 100 \times 10^{-6} \mathrm{sinc} (100 \times 10^{-6} F_x) \]

Similar for the y-direction

\[ P(F_y) = 10^{-3} \mathrm{sinc} (10^{-3} F_y) \]

where

\[ F_x = \frac{x}{\lambda z}, F_y = \frac{y}{\lambda z} \]

Hence,

\[ E(x, y) = \frac{e^{j k z}}{j \lambda z} e^{j \frac{k}{2z} (x^2 + y^2)} (100 \times 10^{-6}) (10^{-3}) \mathrm{sinc} \left( \frac{100 \times 10^{-6} x}{\lambda z} \right) \mathrm{sinc} \left( \frac{10^{-3} y}{\lambda z} \right) \]

Zeros are at

\[ \frac{100 \times 10^{-6} x}{\lambda z} = \pm 1 \]
\[ \theta_x = \frac{x}{z} = \frac{\lambda}{100 \times 10^{-6}} = \frac{0.5 \times 10^{-6}}{100 \times 10^{-6}} \]
\[ \theta_x = 5 \mathrm{mrad} = 0.29^\circ \]